

Notes Before Class

>Question and Answer in English

- ✓ Ask a question in English about last lesson.
- ≻10-minute Quiz
 - ✓ Answer a 10-minute quiz
 - $\checkmark\,$ Evaluate and correct by each other
 - \checkmark Try to answer in English

Transistor Power/Timing Models Summary > Switch Models • Ideal Switch: Functional simulation without timing • Resistive Switch: Static power evaluation • Capacitive Switch: Dynamic power evaluation • Capacitive Switch: Dynamic power evaluation • RC Switch: Basic power and timing evaluation • Transistor Structure Model • El More Model: loop RC additive. • Rabaey Model: Logical and branch efforts > IDS Models • Shockley Eirst-Order Equation: accurate manual

- ✓ Shockley First-Order Equation: accurate manual derivation
- ✓ Sub-threshold Models
- SPICE Models
 - ✓ Complicate Simulation

Stack Effect ✓ Parallel Switch: Son = Aon + Bon, Rs=RA // RB ✓ Serial Switch: Son = Aon + Bon, Rs=RA + RB ✓ Parallel Capacitors: C = CA + CB

- Body Effect
 - ✓ is the threshold voltage changing of source-bulk voltage due to transistor connection in series.

$$V_{t2} \approx V_{t2} + 0.6\sqrt{V_{D1}}$$

M2

M1

Tri-State Logic										
	AND	0	Z	1		OR	0	Z	1	
	0	0	0	0		0	0	Z	1	
	Z	0	Z	Z		Z	Z	Z	1	
	1	0	Z	1		1	1	1	1	
									9	

Example : F=(A+B)(C+D)	F Vdd
Stancard Cell Usually laid with the same height for Channel Routing	
Vss A Name C any on B or crc D :	Vss F ₃₄

Basic Concept on BiCMOS Inverters

- Compared with Bipolar Logics:
 – CMOS Logics: Low power (IDDQ→0)
 - Poor drive capability
- Basic idea of BiCMOS Inverter:

53

