

Compound Semiconductor Lab. Feng Chia University

Outline

I. Introduction:

- Why needs "high-frequency" devices ?
- Why uses "compound" semiconductors ?
- How to enable "high electron-mobility"?
- Why needs "metamorphic" devices ?

II. Some Device Designs:

- δ-Doped InAlAs/InGaAs/GaAs MHEMTs with Different Channel Structures
- Parameter Extraction for RF Model Build-Up
- Gate-Alloy-Related Kink Effects for MHEMTs

III. Conclusions

Q&A

Why needs "high-frequency" devices ?

To provide component recipes for monolithic microwave/millimeterwave integrated circuit (MMIC) applications.

> Microwave: 0.1 GHz ~ 30 GHz Millimeter wave: 30 GHz ~ 300 GHz

Why using "compound" semiconductors ?

- Why using "compound" semiconductors ? (continued)
 - 2. Optical coupling capability:
 - Suitable for opto-electronic integrated circuit (OEIC) implementations.
- 3. Controllable and composition-dependent material properties:
- 4. Variety of compound materials:
 - Both provide high degree of design freedom.
- 5. Mature epitaxy growth technologies:
 - LP-MOCVD, MBE...
 - Make possible excellent precision control of layer thickness and
 - cost-effective mass-production.

How to enable "high electron-mobility" ?

- By spatially separating electrons from their parent donors to greatly improve the ionized-impurity scattering.
- By devising an undoped channel compound, with high saturation velocity, where the transferred two-dimensional electron gas (2DEG) are confined and transport along under applied bias.

 \rightarrow High Speed !!

Why needs "metamorphic" devices ?

-- Comparisons between InP-based and GaAs-based HEMTs:

- Advantages of InP-based HEMTs:
 - > Lattice-matched to higher In-composition InGaAs compounds.
 - > Lower effective electron mass.
 - > Higher electron mobility and saturation velocity.
 - > Larger conduction band discontinuity (ΔE_C).
 - > Higher two-dimensional electron gas (2-DEG) carrier density.
- Applications of InP-based HEMTs:
 - > High drain current density.
 - > High voltage and power gains.
 - > High cutoff frequency.
 - > Low noise.

Disadvantages of InP substrates as compared to GaAs substrates:

- Mechanically fragile.
- Limited wafer-size.
- Expensive.

To integrate the high-speedcompounds onto robust GaAssubstrates with larger wafer-size

Metamorphic HEMTs (MHEMTs)

Metamorphic Buffer:

- Two major functions of using metamorphic buffer :
 - 1) to accommodate the large lattice-mismatch between GaAs substrate and the active layers
 - 2) to prevent the dislocations from being injected into the device channel

δ-Doped InAlAs/InGaAs/GaAs MHEMTs with Different Channel Structures:

> PC-MHEMT:

δ-Doped In_{0.425}Al_{0.575}As/In_{0.65}Ga_{0.35}As/GaAs Pseudomorphic Channel MHEMT

> SGC-MHEMT:

δ-Doped $In_{0.425}Al_{0.575}As/In_xGa_{1-x}As$ (x = 0.5→ 0.65 → 0.5)/GaAs Symmetrically-Graded Channel MHEMT

4 Schematic cross section for the PC-MHEMT:

4 Schematic cross section for the SGC-MHEMT:

- Insertion of an InP layer on the InAlAs structure provides:
 - (1) Selective etching between InP and InAlAs can improve the processing reproducibility and the threshold uniformity.
 - (2) Suppression of kink effects by passivating the deep levels on the InAlAs interface.

$g_m(f)$ Dispersion

Verified by the transconductance frequency dispersion measurement:

without InP

with InP

*Electron Devices Meeting, 1998. IEDM '98 Technical Digest., International 6-9 Dec. 1998 Page(s): 227 – 230. **P.14**

- **Expectations for PC-MHEMT and SGC-MHEMT :**
 - Advantages of PC-MHEMT (In_{0.65}Ga_{0.35}As) :
 - better carrier transport properties
 - larger conduction band discontinuities
 - improved carrier confinement capability

Expected improved characteristics of PC-MHEMT include :

- drain current and transconductance
- high-frequency characteristics
- noise performances
- thermal stability

high-speed, low-noise and hightemperature applications

- Disadvantages of PC-MHEMT :
 - impact-ionization and kink effects
 - degraded output conductance
 - low breakdown voltages
 - narrow gate-voltage-swing (GVS)

• Advantages of SGC-MHEMT ($x = 0.5 \rightarrow 0.65 \rightarrow 0.5$):

- Larger effective energy band-gap:
 - ◆ to improve impact-ionization and kink effects
 - ♦ to decrease output conductance
 - ♦ to improve breakdown voltages
- > Uniform distribution of carriers in channel:
 - to achieve a wider gate-voltage swing

Comparisons of Hall measurement results between PC-MHEMT and SGC-MHEMT:

Hall Characteristics	PC-MHEMT (x = 0.65)	SGC-MHEMT (x = $0.5 \rightarrow 0.65 \rightarrow 0.5$)
Electron Mobility (cm²/V-s) at 300 K (77 K)	7209 (32937)	7059 (30559)
2DEG Concentrations (× 10 ¹² cm ⁻²) at 300 K (77 K)	4.1 (3.6)	3.8 (3.7)
Mobility-Concentration Product (× 10 ¹⁶ 1/V-s) at 300 K (77 K)	2.96 (11.8)	2.68 (11.3)

I-V characteristics of PC-MHEMT and SGC-MHEMT:

The threshold voltage (V_{th}) can be estimated by : $V_{th} = \frac{\phi_B}{q} - \frac{\Delta E_C}{q} - \frac{qN_d d_d}{\varepsilon}$ where $d_d = 25 \text{ nm}$ $\varepsilon = 12 \times 8.85 \times 10^{-14}$ F/cm. $N_d = 4.14 \times 10^{12} \,\mathrm{cm}^{-2}$ (PC-MEHMT) $3.81 \times 10^{12} \text{ cm}^{-2}$ (SGC-MHEMT) $\Delta E_C = 0.78 \text{ eV} (\text{PC-MHEMT})$ 0.72 eV (SGC-MHEMT) $\Phi_{R} = 0.51 \, \text{eV}$ V_{th} was calculated to be -1.84 V (PC-MHEMT) & -1.64 V (SGC-MHEMT). Consistent expectations !! **P. 22**

Two-terminal gate-to-drain breakdown characteristics:

Off-state breakdown characteristics:

by drain-current injection technique (IEEE TED, 40, 1558, 1993.)

On-state breakdown characteristics :

 $\downarrow I_G$ vs. V_{GS} at increased V_{DS} :

4 DC characteristics for PC-MHEMT and SGC-MHEMT:

DC Characteristics	PC-MHEMT	SGC-MHEMT
I _{DSS0} (mA/mm)	511	391
g _{m,max} (mS/mm)	315	271
V _{th} (V)	-1.93	-1.68
g_d (mS/mm)	13.5	11
A _V	23.2	24.6
GVS (V)	1.05	1.3
V _{on} (V)	1.02	1.1
$BV_{GD}(\mathbf{V})$	-12.2	-16.05
BV _{DS, off} (V)	10.46	14.64
$BV_{on}(\mathbf{V})$	9.85	10.9
$I_{CP}(\mu A/mm)$	23.83	2.27

High-frequency characteristics:

Power characteristics:

Noise characteristics:

> **De-embedding algorithms:**

T

Compound Semiconductor Lab. Feng Chia University

Small-Signal Parameters	PC-MHEMT	SGC-MHEMT
Gate Inductance, L _g (nH),	0.012	0.011
Drain Inductance, L _d (nH)	0.09	0.089
Source Inductance, <i>L_s</i> (nH)	0.013	0.008
Gate Resistance, $R_g(\Omega)$	21.6	21.3
Drain Resistance , $R_d(\Omega)$	10.1	13.7
Source Resistance, $R_s(\Omega)$	4.7	4.4
Charging Resistance, $R_i(\Omega)$	1.7	2.1
Output Resistance, $R_{ds}(\Omega)$	343	433
Output Conductance, g _d (mS, mS/mm)	2.91 (14.58)	2.31 (11.55)
trinsic Transconductance, G _m (mS, mS/mm)	90 (450)	75 (375)
Transconductance Delay, T (ps)	1.4	1.6
Gate-Drain Capacitance, C _{gd} (pF)	0.0083	0.0126
Gate-Source Capacitance, C _{gs} (pF)	0.24	0.23
Drain-Source Capacitance, C _{ds} (pF)	0.0615	0.0511

S-Parameter for SGC-MHEMT:

Verifications with measurement results:

4 Schematic band diagram of MHEMT with Au and Ni/Au gates:

I-V characteristics with Au and Ni/Au gates:

 $\mathbf{4} g_m$ and I_{DSS} as a function V_{GS} :

 $\mathbf{4}$ g_m , and g_d characteristics as a function of V_{DS} :

4 Comparisons of I_{DSS0} , $g_{m.max}$, $I_{G, peak}$, g_d , and A_v :

Gate Metal	Au	Ti/Au	Ni/Au	Pt/Au
I _{DSS} (mA/mm)	433	415	421	394
g _{m,max} (mS/mm)	280	220	206	200
$I_{G, peak}$ (µA/mm) at $V_{DS} = 2$ V	28.3	14.5	2.1	2.2
g_d (mS/mm) $V_{DS} = 2$ V	68.7	27.6	26.1	18.1
$A_{v}V_{DS} = 2 V$	2.81	7.61	7.83	11.05

4 Two-terminal gate-drain characteristics :

Compound Semiconductor Lab. Feng Chia University

Gate-Alloys-Related Kink Effects

4 Comparisons of Φ_B, V_{on}, BV_{GD} , and V_{th} :

Gate Metal	Au	Ti/Au	Ni/Au	Pt/Au	
$ \Phi_B (\text{meV}) $	485	606	608	730	
V _{on} (V)	1.11	1.20	1.21	1.23	
BV _{GD} (V)	-5.8	-10.5	-10.6	-11	
V_{th} (V)	-2.47	-2.24	-2.24	-1.95	

Microwave characteristics:

Power characteristics :

4 Noise characteristics:

4 Characteristics comparisons by depositing various gate alloys :

Gate Alloys	Au	Ti/Au	Ni/Au	Pt/Au
f_t (GHz)	17.2	23.8	23.8	20.2
f _{max} (GHz)	29.1	44.9	45.3	53.7
<i>G</i> _s (dB)	18.7	20.3	22.7	22.8
P _{out} (dBm)	11.26	11.74	13.14	12.97
NF _{min} (dB)	2.16	1.17	1.2	1.29
G_a (dB)	16.36	17.96	21.1	16.21

III. Conclusions

- $In_{0.425}Al_{0.575}As/In_{0.65}Ga_{0.35}As$ PC-MHEMT:
 - Better microwave characteristics
 - ◆ suitable for high-speed application
 - Noise characteristics
 - ◆ suitable for low-noise application
 - Thermal stability
 - ◆ suitable high-temperature application
- $\blacksquare In_{0.425}Al_{0.575}As/In_{x}Ga_{1-x}As SGC-MHEMT:$
 - Power characteristics
 - ◆ suitable for high-power application
 - Gate voltage swing
 - ◆ suitable for high-linearity application

III. Conclusions

- High Schottky barrier height gate alloys provide effective ways of improving the respective device performances, including the noise, voltage and power gains.
- Complete and efficient high-frequency parameters extraction for RF model build-up facilitates the MMIC application based on the specific MHEMT designs.
- Prosperity of academic studies on MHEMT designs for MMIC applications are promisingly expected.

Reference Table

