Fill-in or Paste your Answer, Transfer to PDF and Email to me (tch@cc.ncue.edu.tw) by June 23, 11:30am Course : Introduction to VLSI Design Date :

Reg. No. : $\qquad$ Student's Name : $\qquad$ Grade : $\qquad$
I. TRUE OR FALSE (Mark $\bigcirc$ or X, 20\%):
( ) 1. The increment $\mathrm{c}++$ in C language takes about one half of gate count and one half of carry propagation time.
( ) 2.0-1 march test $\Uparrow w 0 \Uparrow r 0 \Uparrow w 1 \Uparrow r 1$ detects more faults than $\Uparrow w 0 r 0 \Uparrow w 1 r 1$.
( ) 3.The rule of tens approximately explains the decision whether to test or not in each manufacturing stages.
( ) 4. Usually a 16 GB NOR type Flash SD is cheaper the a 32GB NAND type Flash memory stick.
( ) 5.IC test can be fully saved if a fault tolerant mechanism is built in.
( ) 6. The smallest oscillator can be implemented by connecting the output of a CMOS inverter to its input.
( ) 7. "module $\mathrm{m}(\mathrm{C}, \mathrm{I}, \mathrm{O}$ ); input C, I; reg O; always@(posedge C) $\mathrm{O}=\mathrm{I}$; endmodule" can be correctly compiled in Verilog.
( ) 8. An 8 -bit adder is verified if the output is 20 for inputs 13 and 7 .
( ) 9. It is called technology mapping to implement Boolean functions into specific logic cells.
( ) 10. EDA Scripting is to take $\geq 1$ general or tool command language interpreters to automate $\geq 1$ electronic design packages.
II. MULTIPLE CHOICE (Choose the best one, 20\%):
( ) 1. Voltage-dividing effect of an SRAM cell occurs at its (A) write (B) standby (C) read (D) search mode.
( ) 2. Which power dissipation is most sensitive to the supply voltage? (A) static current (B) dynamic power (C) short current (D) subthreshold current.
( ) 3. CMRR mainly comes from (A) current mirror (B) accumulator (C) differential pair (D) compensation.
( ) 4. Which is not a purpose of growing poly-silicon prior to iron implementation, (A) serving as a mask (B) preventing from latchup (C) working as a transistor gate (D) self-alignment.
( ) 5. In a high-voltage layout which is usually enhanced? (A) thinox thickness (B) gate extension (C) transistor pitch (D) drain distance.
( ) 6. Which is mainly responsible for transistor-level simulation? (A) Encounter (B) Debussy (C) HSPICE (D) Virtuoso.
( ) 7. Owing to clock wire resistance, shift registers overpass in a cycle is caused by (A) transparent output (B) setup time violation (C) hold time violation (D) bus contention.
( ) 8. Which is to control the transition of contiguous states is an FSM? (A) Reset (B) Clock (C) Toggle (D) Strobe.
( ) 9. Which type of logic structure usually takes low power and long time? (A) AOI (B) OAI (C) NOR (D) NAND.
( ) 10. Which diagram shows the working boundaries of products? (A) I-V (B) Space-Time (C) Shmoo (D) ladder diagram.
III. QUESTIONS ( $120 \%$, at most $60 \%$ adopted):

1. As the following figure, the peak-to-peak jitter and skew is defined as the maximum $t_{C I C 2}=t_{\text {. }}$. Clock-to-Q times $t_{C Q}$ of successive flip-flops FF1 and FF2 are given. The critical path of the combinational circuit takes a $t_{p}$ propagation time. Hold time $t_{H}$ and setup time $t_{s}$ are constraint constant time for flip-flops. Derive the setup-time and hold-time rules in two inequations according to the following figure. (20\%)

2. Draw a typical diagram of a RAM array according to the lecture. ( $15 \%$ ) (including row/col address decoders, SA, WLs, BLs, controller, SRAM cells, etc.)
3. In the following figure, PLLi means the $i$-th ideal phase lock loop to provide clock source of domain i with an average skew $\sigma_{i}$. To reduce the relative skew of all domains, a delay line with delay $\Delta t_{i}$ is applied to beed back loop. Explain the operations and calculate the relation between $\Delta t_{i}$ and domain average skews. (15\%)

with $4 \times 4$ cells. The input/output paths drawn in dashed lines and the carry paths solid lines. (15\%)


$\square$
$\square$
$\square$

$\square$
$\square$

4. Using a typical FSM design procedure, design a toggle flipflop TFF that receives an input T and toggles Q only when T is 1 . Implement the FSM by programming (burn on with a notation X ) on the following PLA diagram. (20\%)

5. Given the fault list of the following circuit as $\mathrm{L}_{f}=\left\{\mathrm{A}_{0}, \mathrm{~A}_{1}\right.$, $\left.\mathrm{B}_{0}, \mathrm{~B}_{1}, \mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{~F}_{0}, \mathrm{~F}_{1}, \mathrm{G}_{0}, \mathrm{G}_{1}, \mathrm{H}_{0}, \mathrm{H}_{1}\right\}$ where $\mathrm{G}_{\mathrm{x}}$ means gate G stuck-at-x fault, (1) justify and propagate to find the test pattern $\mathrm{T}_{\mathrm{G} 1}$ of $\mathrm{G}_{1}$. (2) Then do deductive fault simulation to collect all testable faults of $\mathrm{T}_{\mathrm{G} 1}$. (3) Calculate the fault coverage of $\mathrm{T}_{\mathrm{G} 1}, \mathrm{FC}\left(\mathrm{T}_{\mathrm{G} 1}, \mathrm{~L}_{f}\right)$. $(20 \%)$

6. Assume $F$ is a 3-input function, $F=A B+B C$, map and program F into the following different structures. Write the bitstream for programming the LUT. (15\%)

