

VLSI Test

Tsung-Chu Huang

Department of Electronic Engineering National Changhua University of Education Email: tch@cc.ncue.edu.tw

2016/03/07

T.-C. Huang, NCUE, Fall 2016

Page 1

Applications

- 1. Evaluate (grade) a test (set) T.
- 2. Fault Dropping for Test Generation.
- 3. Construct fault dictionaries before testing for test compaction
- 4. Construct fault dictionaries for Post-test Diagnosis.
- 5. Analyze the operation of a circuit in the presence of the faults.

T.-C. Huang, NCUE, Fall 2016

Page 5

Defect Coverage

- Experience has shown that a test with high Fault Converage (FC) for SSFs also achieve a high DC.
- Defect Level (DL) is defined as the probability of shipping a defective product.

T.-C. Huang, NCUE, Fall 2016

Page 6

Defect Coverage

Yield (Y) is defined as the probability that a manufactured circuit is defect-free.

One model gives $DL=I-Y^{I-d}$.

T.-C. Huang, NCUE, Fall 2016

Page 7

Example

1. Consider all SSFs before collapsing, assume there are 10000 faults and 2000 faults are redundant. Test set T1 can detect 8000 non-redundant faults while T2 can detect only 7200 non-redundant faults. Find their fault coverage (FC) and test efficiency (TE, test coverage for some tools)?

Ans. FC(T1)=8000/10000= 80% FC(T2)=7200/10000= 72% TE(T1)= 8000/ 8000=100% TE(T2)= 7200/ 8000= 90%

T.-C. Huang, NCUE, Fall 2016

Page 8

Review Fault Collapsing & Dropping Illustrating by Fault Dictionary

Redundant Fault

← Equivalent Fault $f_3=f_4$

Abandoned Fault

- ← Dominant Fault
- ← Equivalent Fault $f_6 > f_7 = f_8$

T.-C. Huang, NCUE, Fall 2016

Page 9

Review Fault Collapsing & Dropping Illustrating by Fault Dictionary

↑ Fault Collapsing (folding)

T.-C. Huang, NCUE, Fall 2016

Page 10

Review Fault Collapsing & Dropping Illustrating by Fault Dictionary

Fault Dropping

T.-C. Huang, NCUE, Fall 2016

Review Fault Collapsing & Dropping Illustrating by Fault Dictionary Fault Dropping Patterr

Essential Fault f₉ 1

Fault Grading: $g(f_9) > g(f_1)$ and $g(f_6) > g(f_7) = g(f_8)$ if $f_6 > f_7 = f_8$

T.-C. Huang, NCUE, Fall 2016

Classification of Fault Simulations

- 1. Serial
 - · Simulate one fault at a time.
- 2. Parallel
 - Simulate W (>1) faults at a time.
- 3. Deductive
 - Simulate the good circuit and deduces the behavior of all faulty circuits.
- 4. Concurrent
 - Simulate only elements that are different from the corresponding ones.

T.-C. Huang, NCUE, Fall 2016

Page 14

Serial Fault Simulations

1. Simplest and able to handle of any type of faults.

2. (#Faults + 1) times.

T.-C. Huang, NCUE, Fall 2016 Page 15

Tasks of Fault Simulations

- 1. Fault Specification
 - Fault modeling and definition
 - Fault collapsing
- 2. Fault Insertion
 - · Fault selection and creation in internal data structure
- 3. Fault Propagation
 - Occupy most work to propagate the effects.
- 4. Fault Detection & Discarding
 - Voltage or current signal; analog allowance or digital values
 - A fault detected for k times should be discarded, usually k=1.

T.-C. Huang, NCUE, Fall 2016

Page 16

Parallel Simulation

- 1. Parallel-Fault Fault Simulation: A good circuit and W independent faulty circuits are simultaneously simulated for $\Gamma(F+1)/W_1$ passes.
- Parallel-Pattern Simulation: E.g., a 32-bit integer is early used for one bit in serial simulation and 32 bits in PPFP.
- 3. PPSFP for SSFs.

i = 0 or 1

1|1|1|0|1|0|1|1|0|1|1|1|1|1|1|0|0|0|1|1|1|1|1|0|1|1|1|0|1|0|1

- 3. 2 bits required for 3-value or 4-value logic, say {0, 1, u} and {0, 1, D, D'}. (where D=good1/faulty0=↓=s-a-0)
- Parallel-Pattern Fault Simulation: E.g., a 32-bit integer is early used for one bit in serial simulation and 32 bits in PPFP.

T.-C. Huang, NCUE, Fall 2016

Page 17

Deductive Fault Simulation

- 1. Fault List at wire i: the set of all faults that cause the values of I in N and N_f to be different at the current simulated time.
- 2. Memory for a G-wire circuit with F faults: $G(F+1) \sim O(G^2)$.
- 3. For a gate Z with controlling value c and inversion i:
- 4. A simple example of Fault-List Propagation:

Concurrent Fault Simulation

- Similar to Deductive Fault Simulation but it maintains larger fault list for convenience of executing a Fault-List Event Driven Simulation.
- A concurrent simulator processes only the active faulty circuits.
- 3. The main disadvantage of concurrent simulation is that it requires more memory than the other methods.

T.-C. Huang, NCUE, Fall 2016

Page 29

Critical Path Tracing

- A line l has a critical value v in the test (vector) t iff t detects the fault l s-a-lv. A line with a critical value in t is said to be critical in t.
- 2. POs are critical and the others are found by backtracing.
- 3. Paths composed of critical lines are critical paths.
- 4. A gate input is sensitive (in a test *t*) if complementing its value changes the value of the gate output.
- 5. If a gate output is critical, then its sensitive inputs, if any, are also critical.

T.-C. Huang, NCUE, Fall 2016

Page 30

Capture Line

- 1. Let t be a test that activates fault f in a single-output combinational circuit. Let y be a line with level l_y , sensitized to f by t. If every path sensitized to f either goes through y or does not reach any line with level greater than l_{ν} , then y is said to be a capture line of f in test t.
- 2. A capture is a bottleneck for the propagation of fault effects.

3. A test t detects the fault f iff all the capture lines of f in t are critical in t.

T.-C. Huang, NCUE, Fall 2016

Cones & Fanout-Free Region

- 1. A Cone contains all the logic feeding one primary output.
- 2. To take advantage of the simplicity of critical path tracing in fanout-free circuits, within each cone we identify fanout-free regions (FFRs).
- The inputs of a FFR are checkpoints of the circuit, namely fanout branches and primary inputs. The output of a FFR is either a stem or a primary output.

T.-C. Huang, NCUE, Fall 2016

Page 34

Testability Controllability Observability A Typical Combinational Circuit T.-C. Huang, NCUE, Fall 2016 Page 35

STAFAN: Statistical Fault Analysis Agrawal, 1985 1. Vector-based probability

- 2. C1(*l*): The probability causing the output of line *l* a value v
- 3. O(l): The probability propagating response from l to any output.

