
VLSI TestingVLSI TestingVLSI TestingVLSI Testing

Tsung Chu HuangTsung-Chu Huang

Department of Electronic Engineering
National Changhua University of EducationNational Changhua University of Education

Email: tch@cc.ncue.edu.tw

2016/02/15

Page 1

Syllabus & Chapter Precedence
Introduction

Modeling

Logic Simulation Fault Modeling

Fault SimulationFault Simulation

Testing for Single Stuck FaultsTesting for Single Stuck Faults

T t C iD i f T t bilit Test CompressionDesign for Testability

Page 2

Built-In Self-Test

Introduction to IC Test
O tliOutline

1. What’s Testing
2. Why Test? y
3. Difficulties of Testing
4 How to Do Testing?4. How to Do Testing?
5. Logic/Fault Simulations
6. Test Generation
7. Built-In Self-Test7. Built In Self Test
8. Test Compression
9 DFT9. DFT
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What’s Testing
T t ll h th t i d b dTo tell whether a system is good or bad

Vdd

00 0 0/100 0

Related fields

Verification:  To verify the correctness of  a design

Diagnosis: To tell the faulty siteDiagnosis: To tell the faulty site

Fault-tolerance: To work normally even faults exist
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Why Test?
1. Why not ship without test?
2 Wh t fi l d t t t l ?2. Why not final product test only?

$1 $10 $100$1 $10 $100
Rule of Tens

3. Why not functional test only? 

• Without test at stage k
• Cost wasted:    (1-Y)(Pk+1-Pk)
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Example for Yield Loss due to Size 
I t f T tImportance of Test

N = # transistors in a chip
b ( t i t i f lt )p = prob. (a transistor is faulty)

Pf = prob. (the chip is faulty)

Pf = 1- (1- p) N

If p = 10-6

N = 106

Pf = 63.2%
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Example for Yield Loss due to 
Density or Size

When chips are very small assume the probability ofWhen chips are very small, assume the probability of
defected chip is α     Y=1- α
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Why Not Final Product Test Only?
I t f T tImportance of Test

1. Testability degradation
2 Faults may occur at any phase2. Faults may occur at any phase
3. Average Penalty Increasing
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Why not functional test only?
P bl t thi kProblems to think

1. A 32 bit adder
2 A 32 bit count-up counter with RESET2. A 32 bit count-up counter with RESET 

function   
3 A 1MB cache memory3. A 1MB cache memory
4. A 10M-transistor CPU
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Difficulties in Testing

• Fault may occur anytimeFault may occur anytime
- Design
- Process
- Packageg
- Field

• Fault may occur at any place
Vdd

Vss

• VLSI circuit are large 
- Most problems encountered in

Vss

Most problems encountered in  
testing are NP-complete

• I/O access is limited
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From Defect to Failure

System Level Not workFailureSystem Level Not work

ErrorFunction Level Different state

FaultLogic Level Different logic

DefectPhysical Level Different LRC
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Fault Manifestation

P t F ltPermanent Faults
Non-permanent FaultsNon permanent Faults

Transient Faults
S ft F lt• Soft Faults

Intermittent Faults
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How to Do Testing

• Circuit modeling
• Fault modeling

Modeling

• Logic simulation
F lt i l ti ATPG• Fault simulation

• Test generation
ATPG

• Design for test
• Built in self test

Testable design
• Built-in self test

• Synthesis for testability• Synthesis for testability
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Fault Simulation

• To determine the behavior of faulty circuits

A 1

B 1
G

1
A 1 E

0

0
0

F

D
C 1

0

• Given a test vector, determine all faults that    
are detected by this test vector.
Example:

A C
Test vector (1 1) detects 

A
B

C
( )

{ a0, b0, c1}
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Test Generation

• Given a fault, identify a test to detect this faultGiven a fault, identify a test to detect  this fault
Example:

A
D

0

B F

To detect D s-a-0, D must be set to 1.

EC

Thus A=B=1.
To propagate fault effect to the primary outputTo propagate fault effect to the primary output 

E  must be 1. Thus C must be 0.

Test vector: A=1, B=1, C=0
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ATPG
A t ti T t P tt G tiAutomatic Test Pattern Generation

Given a circuit, identify a set of test vectors toGiven a circuit, identify a set of test vectors to 
detect all faults under consideration.

Input circuit

Form fault list

N
More fault ? Exit

No

Yes

Select a fault

Test generation

Fault
dropping

Test generation

Fault simulation
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Difficulties in test generation
1. Reconvergent fanout
A

B F

A

D
s-a-1

B F

C EC

2 S ti l t t ti2. Sequential test generation

PIs PIsCombinational part

JY
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Circuit Modeling

• Functional model logic function• Functional model--- logic function
- f(x1,x2,...)=...

Truth table- Truth table

• Behavioral model--- functional + timing

• Structural model collection of

- f(x1,x2,...)=... , Delay = 10

• Structural model--- collection of 
interconnected components or elements

A
B

E

G
1

1
0

⇒ All can be described in Verilog
0

C
D F

1
0
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⇒ All can be described in Verilog 

Levels of description

• Switch level
VDD VDD VDD

• Circuit level
VDD VDD VDD

C1C4

C

B

E

1

C2C3

4

• Gate level

E

• Higher/ System levelE

G

A
B

C
D F

G
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Fault modeling

Th ff t f h i l d f t• The effects of physical defects
• Most commonly used fault model:  Single stuck-at       

f lfault

A E A 1 D 1C 1B 1A
B

E

G

A s-a-1
A s-a-0

E s-a-1

D s-a-1
D s-a-0

C s-a-1
C s-a-0

B s-a-1
B s-a-0

F s-a-1 G s-a-1
C
D F

E s-a-1
E s-a-0

F s-a-1
F s-a-0

G s-a-1
G s-a-0

14 faults14 faults
• Other fault models: 

Break faults Bridging faults Transistor stuck open faults- Break faults, Bridging faults, Transistor stuck-open faults , 
Transistor stuck-on faults, Delay faults
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Fault coverage (FC)

# faults detected
FC =

# faults detected
# faults in fault list

1         
1a c 6 stuck-at faults

Example:
0 1

1
a
b

c 6 stuck at faults
( a0,a1,b0,b1,c0,c1 )

0             
0

0 

Test faults detected FC
{(0 0)} c1 16 67%{(0,0)}
{(0,1)}
{(1,1)}

1
a1,c1

a0,b0,c0 
a b c c

16.67%
33.33%
50.00%

{(0,0),(1,1)}
{(1,0),(0,1),(1,1)}

a0,b0,c0,c1
all

66.67%
100.00%
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Testing and Quality

ASIC Testing
Shipped Parts

Fabrication Testing
Yield:

Fraction of
Quality:

Defective partsFraction of 
good parts

Rejects

Defective parts
per million (DPM)

• Quality of shipped parts is a function of yield Y y pp p y
and the test (fault) coverage T 

• Defect level (DL) : fraction of shipped parts that• Defect level (DL) : fraction of shipped parts that 
are defective
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Defect Level, Yield & Fault Coverage

DL:  defect level 
Y:  yieldDL= 1 - Y (1-T)

Yield (Y) Fault Coverage (T) DPM (DL)

y
T:  fault coverage

DL  1 Y 

Yield (Y)
50%
75%
90%

Fault Coverage (T)

90%
90%

90%

DPM (DL)

28,000
67,000

10 00090%
95%
99%

90%
90%
90%

10,000
5,000
1,000

90%
90%

90%
95%
90%

99%
5,000

10,000

1,00090%
90%

99%
99.9%

1,000
100
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Logic simulation 
T d t i h d i it h ld kTo determine how a good circuit should work

• Given input vectors, determine the normal         p ,
circuit response

A

B C

I C
C C

A D

E

G

F

C
C

1

B RB

IR

IF

CC
2

C

B F

E F

H
D E

FCD
E

CJEEC

D E
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Testable Design

• Design for testability (DFT)
• ad hoc techniquesq
• Scan design
• Boundary ScanBoundary Scan

• Built-In Self Test (BIST)( )
• Random number generator (RNG)
• Signature Analyzer (SA)g y ( )

• Synthesis for Testability
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Example of ad hoc techniques
I t t t i tInsert test point

MUX

T/NT/N
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Scan System

Original design

PI PO PI PO

Modified design

C
PI PO

C
PI PO

SO

R R'
T/N

SI
T/N
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Scan Cell Design

DI Q SOQ
DI D Q

CK

DI D Q Q,SO

SI
CKN/T

Q

N/T
(SE)

DI DI
Q,SO

Φ

Q

SI

Φ
Φ

ΦT ΦTΦ +Φ
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Scan Register

CombinationalCombinational
Circuits

DQ DQ DQ DQ

SI SI SI SISO

SE
CLK

SE
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Boundary Scan
I/O Pad Boundary scan cell Boundary scan path

TRST*

APPLICATION LOGICTDI

Instruction registerT

Misc. registersTMS

APPLICATION LOGICTDI
Sout

g

Bypass register
M
U

T
A
P

TCK

TDO

BIST register

Scan register
SinU

X
TDO

TRST*:Test rest (Optional)
TDI: Test data input
TD0: Test data output

Sin

TD0: Test data output                     
TCK: Test clock
TMS: Test mode select
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Boundary Scan (Cont.)

TRST* TRST*

Instruction register

Bypass register

M
U
X

T
A
P

Misc. registers
TMS

TCK

TDO

APPLICATION LOGICTDI Sout

Sin

Instruction register

Bypass register

M
U
X

T
A
P

Misc. registers
TMS

TCK

TDO

APPLICATION LOGIC

Scan register

TDI Sout

Sin

BIST register

Scan register

BIST register

Misc. registers

TRST*

APPLICATION LOGICTDI Sout

Misc registers

TRST*

APPLICATION LOGICTDI Sout

Instruction register

Bypass register

M
U
X

T
A
P

Misc. registers
TMS

TCK

TDO

BIST register

Scan register
Sin

Instruction register

Bypass register

M
U
X

T
A
P

Misc. registers
TMS

TCK

TDO

BIST register

Scan register
Sin
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Built-In-Self Test (BIST)

Places the job of device testing inside the device 
itself
Generates its own stimulus and analyzes its own 
response

circuit from system to system
under testmux

n to
r

ns
e

ze
r

y

pa
tte

rn
en

er
at BIST

Controller es
po

n
A

na
ly

z

good/fail

p ge

Co t o e

biston

R
e A

bistdone
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Built-In-Self Test (BIST) (cont.)

T o major tasks• Two major tasks
- Test pattern generation
- Test result compaction

• Usually implemented by linear feedbackUsually implemented by linear feedback    
shift register

F/F F/F F/F

Page 34

Signature Analyzer (SA)

Input sequence 11110101 (8 bits) 1 2 3 4 5Input sequence 11110101 (8 bits)

1)( 24567 +++++= xxxxxxG

1 2 3 4 5+ Z
5421)( xxxxP +++=

++

Time         Input stream     Register contents      Output stream
0 1 0 1 0 1 1 1 1           0 0 0 0 0                  Initial state
1
.

1 0 1 0 1 1 1           1 0 0 0 0
.                          .

.
5
6
7

.                          .
1 0 1           0 1 1 1 1 

1 0           1 0 1 1 1                       1
1 0 1 0 1 1 0 1

Q i

7
8

1           0 1 0 1 1                       0 1
0 0 1 0 1                       1 0 1

Remainder 
R(x) = x2+x4

Quotient 
1+x2
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Signature Analyzer (SA) (cont.)

1:)( 245 +++ xxxxP
+ 1:)( 2xxQ

1
1

567

2452467

+++=

+++++++

xxx
xxxxxxx

)(1)()()(
24567

xGxxxxxxRxQxP =+++++=+

1+++= xxx

Prob of aliasing error = 1/2nProb. of  aliasing error = 1/2n

where n is # of FFs
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Automatic Test Equipment (ATE)
FlFlow
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Automatic Test Equipment (ATE)
W f iWafer Laminater
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Automatic Test Equipment (ATE)
W f B k id G i dWafer Backside Grinder
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Automatic Test Equipment (ATE)
W f MWafer Mounter
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Automatic Test Equipment (ATE)
A Di i SAuto Dicing Saw
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Automatic Test Equipment (ATE)
A UV I di iAuto UV Irradiation 
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Automatic Test Equipment (ATE)
Di A hDie Attach
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Automatic Test Equipment (ATE)
H dlHandler
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Built-In Self-Test

Levels & ViewsLevels & Views

System Level

Behavioral-View Structural-View Physical-ViewFunctional-View

System-Level

Board-Level

Register-Level

Board Level

Logic-Level

Circuit-Level

Transistor-Level
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Physics-Level

Y-Chart
Gajski transferred the level-view table into a sphere chart: 

Behaviorial
View

Structural
View

if(c) then
p<=a*b;

View

UDP
Symbol

SpecSpec

Page 48Physical View



SoC EDASoC EDA
modularization

Behavioral Structuralpartitioning

library

synthesize
sim

ver

Ph i l
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Physical

Usual Levels & ViewsUsual Levels & Views
Behavioral-View Structural-View Physical-View

System-Level
“Behavioral Mode”

Register-Level “RTL Mode”

Logic-Level “Gate-Level”Logic Level
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Internal & External Models

Program
||

Algorithm
+

Data Structure
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Structural & Functional Models

Behaviorial
View

Structural
View

if(c) then
p<=a*b;

View

UDP
Symbol

SpecSpec
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Structural Models
R i D fi itiRecursive Definition

1. Symbol View: A system or circuit can be represented 
by a symbol with its function.

2. A Structural View of a system (or circuit) is a 
representation or model that consists nodes for 

b t ( b i it ) d l t (subsystems (or subcircuits) and elements (or 
components) represented by some symbol view, and 

f th i i t/ t t l tiarcs for their input/output relations.
3. Usually hierarchical.
4 Th b l l b ( ) ll d4. The bottom-level boxes (components) are called 

primitive elements, which functional model is assumed 
t b k h d d t tto be known such as and, nand, or, nor, not, etc.
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Structural Modeling at Logic Level

1. External Representation
2 Structural Properties2. Structural Properties
3. Hardware Descriptive Languages
4 I t l R t ti4. Internal Representation
5. Example: A Simple Verilog Parser in p p g

C Language.
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External Representation

1. Text or schematic for human.
Connectivity specifies I/O, components with Co ect ty spec es /O, co po e ts t
signals.

2 Text or Language:2. Text or Language:
HDL: VHDL, Verilog, C, etc.
N tli t SPICE t tdl tNetlist: SPICE, gat, tdl, etc.

3. Schematics:
Cadence Schedmatics
OrCAD Schedmatics etcOrCAD Schedmatics, ..etc.
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Structural Properties in Logic Level

1. Branches/Fanout
2 Stem2. Stem
3. Fanout-free
4 R t F t4. Reconvergent Fanout
5. Gate Typeyp
6. Inversion
7 Inversion Parity7. Inversion Parity
8. Level of a Gate in Circuit
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Structural Properties in Logic Level
E lExample

G1 G4

G2
G3

G5G2 G5

G7

G6
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Structural Properties in Logic Level
E l 27 i ISCAS89 b h kExample: s27 in ISCAS89 benchmark

17

0 14 8
16

11
9

10

0

1

2
12

8
15

13

9

2

3

13

7

5

6
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Internal Representation
E l M Si l V il PExample: My Simple Verilog Parser

Top
module

Instance Net 
List

module module module

Pi Li t

List

Port List
Pin List

module module
Instance

Port List
Pin List

InstanceInstance

Port List
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Structure-Oriented Design Methodology

1 Top Down DesignTop 1. Top-Down Design
2. Bottom-Up

Top

3. Middle-Out
4. Ends-In

A B
4. Ends In
5. Hybrid (Greedy)

C D E
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Functional Modeling at Logic Level

1. Truth Table & Primitive Cubes.
2 State Table & Flow Table2. State Table & Flow Table.
3. Binary Decision Diagrams.
4 P F ti l M d l4. Programs as Functional Models.

Page 61

Truth Table & Primitive Cubes

A B C F
0 0 0 1

A B C F
X 1 0 00 0 0 1

0 0 1 1
X 1 0 0
1 1 X 0

0 1 0 0
0 1 1 1

X 0 X 1
0 1 1 10 1 1 1

1 0 0 1
0 1 1 1

1 0 1 1
1 1 0 0 BCABF +1 1 0 0
1 1 1 0

BCABF +=
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Huffman Model for a Finite State Machine
Si l Cl k S h DFF b dSingle Clock, Synchronous, DFF-based

PI: 
Primary Inputs

PO: 
Primary OutputsN

Combinational
Circuit

y p

PPI:

y p

O
LX Z

PPI: 
Pseudo PI

PPO: 
Pseudo PO

Q DQ DQ D
MM Q D

Q DQ D
y Y NS: Next StatePS: Present State

Clk MS 2Count  State ≤
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State Diagram
E l A L k ith P d 1101Example: A Lock with Password 1101

Waiting for
1011

Waiting for
011

1/0
1/0

0/0

1011 011 1/0

00 01
0/00/01/1

00 01

1/1

Waiting forWaiting for 0/0
111 1/0
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11 10

State Table & Flow Table
Q X D Z

K-map or
McKlusky Method:

Q1 Q0 X0 D1 D0 Z0

0 0 0 0 0 0
XQQXQQXQD 010111 ++=

XD0 0 0 0 0 0

0 0 1 0 1 0
XD =0

XQQZ 01=
0 1 0 1 0 0

0 1 1 0 1 0

QQ 01

X
Z0 1 1 0 1 0

1 0 0 0 0 0

1 0 1 1 1 0

1 1 0 1 0 01 1 0 1 0 0

1 1 1 0 1 1 Q D0
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Q D1

Binary Decision Diagrams
1. A Binary Decision Diagram (BDD) is a graph 

model of the function of a circuitmodel of the function of a circuit.

CBACF += F

A C

B

A

B

0 1

B

C

A

0 1

B B
00

1
B A

C C 1
10

1 Reduced Ordered BDD
10

0

Page 66
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Programs as Functional Models
1. Assembly-Like:

LDA A
3. C-Code is the 

direct and fastLDA A
AND B
INV

direct and fast 
simulator.

C A+BOR C
STA F

C=A+B;
A=R1*R2;
B= B;2. C-Like:

main(F, A, B, C)

B=~B;

{ int F, A, B, C;
F =  ~ ( A && B ) || C;

}}
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Functional Modeling at Register Level

1. Basic RTL Constructs
2 Timing Modeling in RTLs2. Timing Modeling in RTLs
3. Internal RTL Models (See Internal 

str ct ral model)structural model)
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Basic RTL Constructs

1. RTL (Register-Transfer Language in Register-Transfer Level)
PC←PC+1; A←A+B+C
PC←PC+1; if C=1 PC←#FA07
R3←A – R4; A←0

2. C or Verilog-like Language:
d l Add (C S A B Ci)module Adder(Co, Sum, A, B, Ci);
Input [15:0] A, B;
Input Ci;Input Ci;
output Co;
output [15:0] Sum; p [ ]
assign  {Co, Sum} = A + B + Ci;

endmodule
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Timing Modeling in RTLs

1. Verilog-like Code:
Sum = #20 A+B;Su # 0 ;
initial

beginbegin
A=1; B=0;
#10 B=1; A=0;#10 B=1; A=0;
#40 B=0;
#10 $stop;#10 $stop;

end
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Quick Tutorial on Verilog
1. Usual version:

1. VerilogXL/Cadence
2. Verilog/Altera
3. Verilog/Xilinx
4. Verilog/MyCADg y
5. SynaptiCAD Verilogger
6. VeriWell
7. e.t.c.

2 Structural View Gate Level;2. Structural View Gate Level;
3. Behavorial View RTL Level;

S4. Finite State Machine
5. Memory Module

Page 71

y

VLSI TestVLSI TestVLSI TestVLSI Test

Tsung Chu HuangTsung-Chu Huang

Department of Electronic Engineering
National Changhua University of EducationNational Changhua University of Education

Email: tch@cc.ncue.edu.tw

2016/02/22

Page 72



Syllabus & Chapter Precedence
Introduction

Modeling

Logic Simulation Fault Modeling

Fault SimulationFault Simulation

Testing for Single Stuck FaultsTesting for Single Stuck Faults

T t C iD i f T t bilit Test CompressionDesign for Testability

Page 73

Built-In Self-Test

Simulation Process

Stimuli

Simulation
Program

Internal
Model ProgramModel

Results
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Applications of Logic Simulations

1. Simulation Based Verification (Design 
Verification Test): Verification for DesignVerification Test): Verification for Design 
Errors

2 Simulation Based Pattern Generation2. Simulation Based Pattern Generation
3. Debugging Software/Microcode
4. IP Modeling

Page 75

Classification of Verification

1. Formal Verification
1. Axioms (Facts, Primitives)
2 Theorems (Rules Structural Relations)2. Theorems (Rules, Structural Relations)
3. Proof (Derivation)

• Informal VerificationInformal Verification
• Simulation-based

Page 76

Problems of Simulation-Based Verification

1. How does one generate the input stimuli 
(i.e. design verification test generation)?(i.e. design verification test generation)?

2. How does one know the results are 
correct?correct?

3. How good (complete) are applied input 
stimuli? (design test evaluation)
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Types of Simulations

1. Compiler-driven simulator
2 Table-driven simulator2. Table driven simulator
3. Activity-driven simulator

E t D i i l t⊂ Event-Driven simulator
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Levels of Simulations

1. Register-Level
2 Functional-Level2. Functional Level
3. Gate-Level
4 Mi d L l4. Mixed-Level

1. Time-domain
2. Frequency-domain

5 Transistor-Level5. Transistor-Level
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Simulated Values

Multiple ValuesMultiple Values
Weak Signals

Boolean
{0 1}

Unknown
Tristate
Floating{0,1}

Unknown
u

Floating
Hi-Z

z

Don’t-care, X is a union of some values, that is different from u.
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The Unknown Logic Value
u

1 t l f {0 1}1. u represents one value of {0, 1}.

0000

u10AND

u100

u10OR

u01

u10NOT

uu0u

u101

u1uu

1111

2. u vs. X
X10

1
0∅00

uX10∩
∅

∅ ∅1 1

uuu
uXX

1

∅ ∅

0
1
1

1
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3-Value Logic Simulation
E lExample

1 L f I f ti i 3 V LSi1. Loss of Information in 3-V LSim
0 u
u

u

uX→1
1

u
u

uX→1

2. The fourth value u may solve the2. The fourth value u may solve the 
above  problem but those with 
more two statesmore two states.

3. u may indicate an oscillation or 

Page 82

glitch in some simulation systems.

The Hi-Z Logic Value
z

1 It can be looked as {weak 0 weak 1 intermediate value}1. It can be looked as {weak-0, weak-1, intermediate-value}
1

A Z

0

2. 4-V logic (0, 1, Z, X) is used in many HDL, where X is not 
don’t_care but unknown.

3. Logic operations except wired-logic are conservatively 
derived into an unknown value X. 
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Compiled Simulation
C il b d Si l tCompiler-based Simulator

1. Usually the combinational circuit is 
levelized into a direct acyclic graph (DAG)levelized into a direct acyclic graph (DAG) 
from inputs.

2 E h t i t d b th i2. Each gate is represented by the generic 
primitive of the compiled language, say, 
assembly or C.

3. Circuit-timing is difficult to simulate.3. Circuit timing is difficult to simulate.
4. The compiled code (usually called C-code) 

is the fast functional simulation approachis the fast functional simulation approach.
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Compiled Simulation
E lExample

17

0

1

14

12

8
16

15

11

9

10

C il1

2

3

12
13

7

Compiler

5

6

C (G G G GComb(G0, G1, G2, G3,
G17, G11, G13, G10)
{

G14=~G0;
G8 G14&&G6

main()
{

for(Clk=0;
Clk<Stop G8=G14&&G6;

G12=~(G1||G7);
G16=G3||G8;
G16=G8||G12;
G13=~(G12||G2);

Clk<Stop;
Clk++)

{
Input(G0, G1, G2, G3);
Comb(G0 G1 G2 G3 G13=~(G12||G2);

G9=~(G16&&G15);
G11=~(G5||G9)
G17=~(G3||G11);
G10=~G11;

Comb(G0, G1, G2, G3, 
D5, D6, D7, Z);

Waveform_a_cycle();
}

}
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G10 G11;
}

}

Events in HDLs
Si l E tSignal Events

1. Envents are Input and State Changes.1. Envents are Input and State Changes.
2. Primitive events correspondent to some signal Clk 

includes its rise (posedge Clk) and fall (negedge Clk).includes its rise (posedge Clk) and fall (negedge Clk).
3. Composite events are the union of more than 2 evnets.
4 The change of Clk is an composite event (Clk)4. The change of Clk is an composite event (Clk).
5. They are propagated using a structural model of a 

circuitcircuit.
6. Terminology:

1 Circuit simulated time simulation time circuit1. Circuit simulated time, simulation time, circuit 
time.

2 CPU time2. CPU time.
3. Compiling time.
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Event-Driven Simulation
Ti Wh lTime-Wheel

1. Only simulated times are extracted from real time.1. Only simulated times are extracted from real time.

to t1 t2 t3 t4 t5
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Event-Driven Simulation
Ti Wh lTime-Wheel

1. The conceptual simulation time is recorded to a1. The conceptual simulation time is recorded to a 
dynamic time list.

to t1 t3 t4 t5t2
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Event-Driven Simulation
Ti Wh lTime-Wheel

1. The simulation time is twisted into a time wheel using a1. The simulation time is twisted into a time wheel using a 
ring as a queue to recycle the memory.

2. The simulation time is twisted into a time wheel using a 
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ring as a queue to recycle the memory.

Event-Driven Simulation
Ti Wh lTime-Wheel

1. Since the computation is actually sequential in real1. Since the computation is actually sequential in real 
time, the evaluations at the same simulation time 
should be ordered to a list.

2. New events are generated by function evaluating and 
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event propagating.



Event-Driven Simulation
M i FlMain Flow

Advance simulation time No more events

Determine current events Done

Update values

Propagate Evnets

Evaluate activated elements

Schedule resulting events
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Delay Models

1 The basic (functional) delay model is that of a transport1. The basic (functional) delay model is that of a transport 
delay, which specifies the interval d (units) separating an 
output change from input changes which caused itoutput change from input changes which caused it.

A A#dB F AB #dA
B

F

2. inertial delay: the min. duration to activate delay transport.
3. Spikes (<inertial) will be filtered by the gate.
4. Slightly different btw I/O based inertial delays. 
5. Exhaustively, for N-input, M-output functional element, 4MN

delays are considered.
6. 3 values (min, typical, max) are extended in many HDLs.
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Delay Models in Uniform Transistor Sizing

1 The delay is approximately proportional to its fanout1. The delay is approximately proportional to its fanout, 
thus one circuit-dependent delay model derives from 
d~RC=IOd□d RC IOd□ .

2. Due to the stack effect, R is proportional to the input 
count I in uniform tarsistor sizingcount I in uniform tarsistor sizing.

3. C is proportional to its fanout O.

II

O
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Hazard Detection

0 1
1. Static

0 1

0 0 0
1 0 1

A
B

F
1 0 1

2. Dynamic: similarly for >3 inputs or with 
ffeedback

Basic Detection:Basic Detection:
1. Consider combinational network C and the 

changed input I’ btw time t and t+1changed input I btw time t and t+1.
2. Stimulate each feedback wire or changed input 

with unknown value u to comparewith unknown value u to compare.
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Logic Simulation Parallelization
1. When the operation sequence and the bitwise dimension 

are independentare independent.
2. Taking advantage of the parallelism of the word size in 

the computerthe computer.
3. Usually, a word (32 bits for a 32-bit computer) of gate-

values are propagated and evaluated through the DAG-values are propagated and evaluated through the DAG-
based combinational circuit.

101010100
100000100
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110001100
100000100

Internal Model of a Gate for Logic Simulation
typedef struct _gate GATE;
struct _gate {

GATE *in1, *in2;
G *GATE *out;
TYPE type;
i t lint value;
};

typedef enum _type TYPE;
enum _type {AND, OR, NAND, NOR, INV};
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Internal Model of a Gate for Logic Simulation
typedef struct _gate GATE;
struct _gate {

GATE *in[10];
G *GATE *out;
TYPE type;
i t lint value;
};
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Internal Model of a Gate for Logic Simulation
typedef struct _gate GATE;
struct _gate {

GateList *in;
G *GATE *out;
TYPE type;
i t lint value;
};

typedef struct _gatelistGateList;
struct _gatelist {

GATE *gate;
GateList *next;
}
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Element Evaluation

1. (Truth) Table Look-up: exponential, only for( ) y
elements.

2. Dummy Input: for almost uniform input countsy p p
3. Input Scanning: for small input counts

1. Controlling value c: 0 for AND-type gates
1 for OR-type gates

2. Inversion i: 0 for AND, OR
1 f NAND NOR NOT1 for NAND, NOR, NOT

eval(g, c, i) {
u value = false;u_value  false;
for every input value v of g

if (v == c) return (c ^ i); else if (v == u) 
l tu_value = true;

if u_value return u; else return !c ^ i;
}
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4. Input Counting: for large input counts

Potential Topic of the Project
Write a logic simulation program to generate the output 
vectors after parsing the ISCAS85 benchmark circuitsvectors after parsing the ISCAS85 benchmark circuits 
and a list of input vectors.

sim input.txt c17.tdl output.txt

101 00
110
011

10
11

Circuit
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