
VLSI TestingVLSI TestingVLSI TestingVLSI Testing

Tsung Chu HuangTsung-Chu Huang

Department of Electronic Engineering
National Changhua University of EducationNational Changhua University of Education

Email: tch@cc.ncue.edu.tw

2016/02/15

Page 1

Syllabus & Chapter Precedence
Introduction

Modeling

Logic Simulation Fault Modeling

Fault SimulationFault Simulation

Testing for Single Stuck FaultsTesting for Single Stuck Faults

T t C iD i f T t bilit Test CompressionDesign for Testability

Page 2

Built-In Self-Test

Introduction to IC Test
O tliOutline

1. What’s Testing
2. Why Test? y
3. Difficulties of Testing
4 How to Do Testing?4. How to Do Testing?
5. Logic/Fault Simulations
6. Test Generation
7. Built-In Self-Test7. Built In Self Test
8. Test Compression
9 DFT9. DFT

Page 3

What’s Testing
T t ll h th t i d b dTo tell whether a system is good or bad

Vdd

00 0 0/100 0

Related fields

Verification: To verify the correctness of a design

Diagnosis: To tell the faulty siteDiagnosis: To tell the faulty site

Fault-tolerance: To work normally even faults exist

Page 4

Why Test?
1. Why not ship without test?
2 Wh t fi l d t t t l ?2. Why not final product test only?

$1 $10 $100$1 $10 $100
Rule of Tens

3. Why not functional test only?

• Without test at stage k
• Cost wasted: (1-Y)(Pk+1-Pk)

Page 5

Example for Yield Loss due to Size
I t f T tImportance of Test

N = # transistors in a chip
b (t i t i f lt)p = prob. (a transistor is faulty)

Pf = prob. (the chip is faulty)

Pf = 1- (1- p) N

If p = 10-6

N = 106

Pf = 63.2%

Page 6

Example for Yield Loss due to
Density or Size

When chips are very small assume the probability ofWhen chips are very small, assume the probability of
defected chip is α � Y=1- α

Page 7

Why Not Final Product Test Only?
I t f T tImportance of Test

1. Testability degradation
2 Faults may occur at any phase2. Faults may occur at any phase
3. Average Penalty Increasing

Page 8

Why not functional test only?
P bl t thi kProblems to think

1. A 32 bit adder
2 A 32 bit count-up counter with RESET2. A 32 bit count-up counter with RESET

function
3 A 1MB cache memory3. A 1MB cache memory
4. A 10M-transistor CPU

Page 9

Difficulties in Testing

• Fault may occur anytimeFault may occur anytime
- Design
- Process
- Packageg
- Field

• Fault may occur at any place
Vdd

Vss

• VLSI circuit are large
- Most problems encountered in

Vss

Most problems encountered in
testing are NP-complete

• I/O access is limited

Page 10

From Defect to Failure

System Level Not workFailureSystem Level Not work

ErrorFunction Level Different state

FaultLogic Level Different logic

DefectPhysical Level Different LRC

Page 11

Fault Manifestation

P t F ltPermanent Faults
Non-permanent FaultsNon permanent Faults

Transient Faults
S ft F lt• Soft Faults

Intermittent Faults

Page 12

Bathtub Curve

ra
te Infant

mortality
Working

life
Wearout

ai
lu

re
 r mortality life

Fa

random failure

time

Burn in

Page 13

How to Do Testing

• Circuit modeling
• Fault modeling

Modeling

• Logic simulation
F lt i l ti ATPG• Fault simulation

• Test generation
ATPG

• Design for test
• Built in self test

Testable design
• Built-in self test

• Synthesis for testability• Synthesis for testability

Page 14

Fault Simulation

• To determine the behavior of faulty circuits

A 1

B 1
G

1
A 1 E

0

0
0

F

D
C 1

0

• Given a test vector, determine all faults that
are detected by this test vector.
Example:

A C
Test vector (1 1) detects

A
B

C
()

{ a0, b0, c1}

Page 15

Test Generation

• Given a fault, identify a test to detect this faultGiven a fault, identify a test to detect this fault
Example:

A
D

0

B F

To detect D s-a-0, D must be set to 1.

EC

Thus A=B=1.
To propagate fault effect to the primary outputTo propagate fault effect to the primary output

E must be 1. Thus C must be 0.

Test vector: A=1, B=1, C=0

Page 16

ATPG
A t ti T t P tt G tiAutomatic Test Pattern Generation

Given a circuit, identify a set of test vectors toGiven a circuit, identify a set of test vectors to
detect all faults under consideration.

Input circuit

Form fault list

N
More fault ? Exit

No

Yes

Select a fault

Test generation

Fault
dropping

Test generation

Fault simulation

Page 17

Difficulties in test generation
1. Reconvergent fanout
A

B F

A

D
s-a-1

B F

C EC

2 S ti l t t ti2. Sequential test generation

PIs PIsCombinational part

JY

Page 18

K
CK clkY

Circuit Modeling

• Functional model logic function• Functional model--- logic function
- f(x1,x2,...)=...

Truth table- Truth table

• Behavioral model--- functional + timing

• Structural model collection of

- f(x1,x2,...)=... , Delay = 10

• Structural model--- collection of
interconnected components or elements

A
B

E

G
1

1
0

⇒ All can be described in Verilog
0

C
D F

1
0

Page 19

⇒ All can be described in Verilog

Levels of description

• Switch level
VDD VDD VDD

• Circuit level
VDD VDD VDD

C1C4

C

B

E

1

C2C3

4

• Gate level

E

• Higher/ System levelE

G

A
B

C
D F

G

Page 20

Fault modeling

Th ff t f h i l d f t• The effects of physical defects
• Most commonly used fault model: Single stuck-at

f lfault

A E A 1 D 1C 1B 1A
B

E

G

A s-a-1
A s-a-0

E s-a-1

D s-a-1
D s-a-0

C s-a-1
C s-a-0

B s-a-1
B s-a-0

F s-a-1 G s-a-1
C
D F

E s-a-1
E s-a-0

F s-a-1
F s-a-0

G s-a-1
G s-a-0

14 faults14 faults
• Other fault models:

Break faults Bridging faults Transistor stuck open faults- Break faults, Bridging faults, Transistor stuck-open faults ,
Transistor stuck-on faults, Delay faults

Page 21

Fault coverage (FC)

faults detected
FC =

faults detected
faults in fault list

1
1a c 6 stuck-at faults

Example:
0 1

1
a
b

c 6 stuck at faults
(a0,a1,b0,b1,c0,c1)

0
0

0

Test faults detected FC
{(0 0)} c1 16 67%{(0,0)}
{(0,1)}
{(1,1)}

1
a1,c1

a0,b0,c0
a b c c

16.67%
33.33%
50.00%

{(0,0),(1,1)}
{(1,0),(0,1),(1,1)}

a0,b0,c0,c1
all

66.67%
100.00%

Page 22

Testing and Quality

ASIC Testing
Shipped Parts

Fabrication Testing
Yield:

Fraction of
Quality:

Defective partsFraction of
good parts

Rejects

Defective parts
per million (DPM)

• Quality of shipped parts is a function of yield Y y pp p y
and the test (fault) coverage T

• Defect level (DL) : fraction of shipped parts that• Defect level (DL) : fraction of shipped parts that
are defective

Page 23

Defect Level, Yield & Fault Coverage

DL: defect level
Y: yieldDL= 1 - Y (1-T)

Yield (Y) Fault Coverage (T) DPM (DL)

y
T: fault coverage

DL 1 Y

Yield (Y)
50%
75%
90%

Fault Coverage (T)

90%
90%

90%

DPM (DL)

28,000
67,000

10 00090%
95%
99%

90%
90%
90%

10,000
5,000
1,000

90%
90%

90%
95%
90%

99%
5,000

10,000

1,00090%
90%

99%
99.9%

1,000
100

Page 24

Logic simulation
T d t i h d i it h ld kTo determine how a good circuit should work

• Given input vectors, determine the normal p ,
circuit response

A

B C

I C
C C

A D

E

G

F

C
C

1

B RB

IR

IF

CC
2

C

B F

E F

H
D E

FCD
E

CJEEC

D E

Page 25

Testable Design

• Design for testability (DFT)
• ad hoc techniquesq
• Scan design
• Boundary ScanBoundary Scan

• Built-In Self Test (BIST)()
• Random number generator (RNG)
• Signature Analyzer (SA)g y ()

• Synthesis for Testability

Page 26

Example of ad hoc techniques
I t t t i tInsert test point

MUX

T/NT/N

Page 27

Scan System

Original design

PI PO PI PO

Modified design

C
PI PO

C
PI PO

SO

R R'
T/N

SI
T/N

Page 28

Scan Cell Design

DI Q SOQ
DI D Q

CK

DI D Q Q,SO

SI
CKN/T

Q

N/T
(SE)

DI DI
Q,SO

Φ

Q

SI

Φ
Φ

ΦT ΦTΦ +Φ

Page 29

Scan Register

CombinationalCombinational
Circuits

DQ DQ DQ DQ

SI SI SI SISO

SE
CLK

SE

Page 30

Boundary Scan
I/O Pad Boundary scan cell Boundary scan path

TRST*

APPLICATION LOGICTDI

Instruction registerT

Misc. registersTMS

APPLICATION LOGICTDI
Sout

g

Bypass register
M
U

T
A
P

TCK

TDO

BIST register

Scan register
SinU

X
TDO

TRST*:Test rest (Optional)
TDI: Test data input
TD0: Test data output

Sin

TD0: Test data output
TCK: Test clock
TMS: Test mode select

Page 31

Boundary Scan (Cont.)

TRST* TRST*

Instruction register

Bypass register

M
U
X

T
A
P

Misc. registers
TMS

TCK

TDO

APPLICATION LOGICTDI Sout

Sin

Instruction register

Bypass register

M
U
X

T
A
P

Misc. registers
TMS

TCK

TDO

APPLICATION LOGIC

Scan register

TDI Sout

Sin

BIST register

Scan register

BIST register

Misc. registers

TRST*

APPLICATION LOGICTDI Sout

Misc registers

TRST*

APPLICATION LOGICTDI Sout

Instruction register

Bypass register

M
U
X

T
A
P

Misc. registers
TMS

TCK

TDO

BIST register

Scan register
Sin

Instruction register

Bypass register

M
U
X

T
A
P

Misc. registers
TMS

TCK

TDO

BIST register

Scan register
Sin

Page 32

Built-In-Self Test (BIST)

Places the job of device testing inside the device
itself
Generates its own stimulus and analyzes its own
response

circuit from system to system
under testmux

n to
r

ns
e

ze
r

y

pa
tte

rn
en

er
at BIST

Controller es
po

n
A

na
ly

z

good/fail

p ge

Co t o e

biston

R
e A

bistdone

Page 33

Built-In-Self Test (BIST) (cont.)

T o major tasks• Two major tasks
- Test pattern generation
- Test result compaction

• Usually implemented by linear feedbackUsually implemented by linear feedback
shift register

F/F F/F F/F

Page 34

Signature Analyzer (SA)

Input sequence 11110101 (8 bits) 1 2 3 4 5Input sequence 11110101 (8 bits)

1)(24567 +++++= xxxxxxG

1 2 3 4 5+ Z
5421)(xxxxP +++=

++

Time Input stream Register contents Output stream
0 1 0 1 0 1 1 1 1 0 0 0 0 0 Initial state
1
.

1 0 1 0 1 1 1 1 0 0 0 0
. .

.
5
6
7

. .
1 0 1 0 1 1 1 1

1 0 1 0 1 1 1 1
1 0 1 0 1 1 0 1

Q i

7
8

1 0 1 0 1 1 0 1
0 0 1 0 1 1 0 1

Remainder
R(x) = x2+x4

Quotient
1+x2

Page 35

Signature Analyzer (SA) (cont.)

1:)(245 +++ xxxxP
+ 1:)(2xxQ

1
1

567

2452467

+++=

+++++++

xxx
xxxxxxx

)(1)()()(
24567

xGxxxxxxRxQxP =+++++=+

1+++= xxx

Prob of aliasing error = 1/2nProb. of aliasing error = 1/2n

where n is # of FFs

Page 36

Automatic Test Equipment (ATE)
FlFlow

Page 37

Automatic Test Equipment (ATE)
W f iWafer Laminater

Page 38

Automatic Test Equipment (ATE)
W f B k id G i dWafer Backside Grinder

Page 39

Automatic Test Equipment (ATE)
W f MWafer Mounter

Page 40

Automatic Test Equipment (ATE)
A Di i SAuto Dicing Saw

Page 41

Automatic Test Equipment (ATE)
A UV I di iAuto UV Irradiation

Page 42

Automatic Test Equipment (ATE)
Di A hDie Attach

Page 43

Automatic Test Equipment (ATE)
H dlHandler

Page 44

VLSI TestVLSI TestVLSI TestVLSI Test

Tsung Chu HuangTsung-Chu Huang

Department of Electronic Engineering
National Changhua University of EducationNational Changhua University of Education

Email: tch@cc.ncue.edu.tw

2016/02/22

Page 45

Syllabus & Chapter Precedence
Introduction

Modeling

Logic Simulation Fault Modeling

Fault SimulationFault Simulation

Testing for Single Stuck FaultsTesting for Single Stuck Faults

T t C iD i f T t bilit Test CompressionDesign for Testability

Page 46

Built-In Self-Test

Levels & ViewsLevels & Views

System Level

Behavioral-View Structural-View Physical-ViewFunctional-View

System-Level

Board-Level

Register-Level

Board Level

Logic-Level

Circuit-Level

Transistor-Level

Page 47

Physics-Level

Y-Chart
Gajski transferred the level-view table into a sphere chart:

Behaviorial
View

Structural
View

if(c) then
p<=a*b;

View

UDP
Symbol

SpecSpec

Page 48Physical View

SoC EDASoC EDA
modularization

Behavioral Structuralpartitioning

library

synthesize
sim

ver

Ph i l
Page 49

Physical

Usual Levels & ViewsUsual Levels & Views
Behavioral-View Structural-View Physical-View

System-Level
“Behavioral Mode”

Register-Level “RTL Mode”

Logic-Level “Gate-Level”Logic Level

Page 50

Internal & External Models

Program
||

Algorithm
+

Data Structure

Page 51

Structural & Functional Models

Behaviorial
View

Structural
View

if(c) then
p<=a*b;

View

UDP
Symbol

SpecSpec

Page 52Physical View

Structural Models
R i D fi itiRecursive Definition

1. Symbol View: A system or circuit can be represented
by a symbol with its function.

2. A Structural View of a system (or circuit) is a
representation or model that consists nodes for

b t (b i it) d l t (subsystems (or subcircuits) and elements (or
components) represented by some symbol view, and

f th i i t/ t t l tiarcs for their input/output relations.
3. Usually hierarchical.
4 Th b l l b () ll d4. The bottom-level boxes (components) are called

primitive elements, which functional model is assumed
t b k h d d t tto be known such as and, nand, or, nor, not, etc.

Page 53

Structural Modeling at Logic Level

1. External Representation
2 Structural Properties2. Structural Properties
3. Hardware Descriptive Languages
4 I t l R t ti4. Internal Representation
5. Example: A Simple Verilog Parser in p p g

C Language.

Page 54

External Representation

1. Text or schematic for human.
Connectivity specifies I/O, components with Co ect ty spec es /O, co po e ts t
signals.

2 Text or Language:2. Text or Language:
HDL: VHDL, Verilog, C, etc.
N tli t SPICE t tdl tNetlist: SPICE, gat, tdl, etc.

3. Schematics:
Cadence Schedmatics
OrCAD Schedmatics etcOrCAD Schedmatics, ..etc.

Page 55

Structural Properties in Logic Level

1. Branches/Fanout
2 Stem2. Stem
3. Fanout-free
4 R t F t4. Reconvergent Fanout
5. Gate Typeyp
6. Inversion
7 Inversion Parity7. Inversion Parity
8. Level of a Gate in Circuit

Page 56

Structural Properties in Logic Level
E lExample

G1 G4

G2
G3

G5G2 G5

G7

G6

Page 57

Structural Properties in Logic Level
E l 27 i ISCAS89 b h kExample: s27 in ISCAS89 benchmark

17

0 14 8
16

11
9

10

0

1

2
12

8
15

13

9

2

3

13

7

5

6

Page 58

Internal Representation
E l M Si l V il PExample: My Simple Verilog Parser

Top
module

Instance Net
List

module module module

Pi Li t

List

Port List
Pin List

module module
Instance

Port List
Pin List

InstanceInstance

Port List

Page 59

Structure-Oriented Design Methodology

1 Top Down DesignTop 1. Top-Down Design
2. Bottom-Up

Top

3. Middle-Out
4. Ends-In

A B
4. Ends In
5. Hybrid (Greedy)

C D E

Page 60

Functional Modeling at Logic Level

1. Truth Table & Primitive Cubes.
2 State Table & Flow Table2. State Table & Flow Table.
3. Binary Decision Diagrams.
4 P F ti l M d l4. Programs as Functional Models.

Page 61

Truth Table & Primitive Cubes

A B C F
0 0 0 1

A B C F
X 1 0 00 0 0 1

0 0 1 1
X 1 0 0
1 1 X 0

0 1 0 0
0 1 1 1

X 0 X 1
0 1 1 10 1 1 1

1 0 0 1
0 1 1 1

1 0 1 1
1 1 0 0 BCABF +1 1 0 0
1 1 1 0

BCABF +=

Page 62

Huffman Model for a Finite State Machine
Si l Cl k S h DFF b dSingle Clock, Synchronous, DFF-based

PI:
Primary Inputs

PO:
Primary OutputsN

Combinational
Circuit

y p

PPI:

y p

O
LX Z

PPI:
Pseudo PI

PPO:
Pseudo PO

Q DQ DQ D
MM Q D

Q DQ D
y Y NS: Next StatePS: Present State

Clk MS 2Count State ≤

Page 63

State Diagram
E l A L k ith P d 1101Example: A Lock with Password 1101

Waiting for
1011

Waiting for
011

1/0
1/0

0/0

1011 011 1/0

00 01
0/00/01/1

00 01

1/1

Waiting forWaiting for 0/0
111 1/0

Page 64

11 10

State Table & Flow Table
Q X D Z

K-map or
McKlusky Method:

Q1 Q0 X0 D1 D0 Z0

0 0 0 0 0 0
XQQXQQXQD 010111 ++=

XD0 0 0 0 0 0

0 0 1 0 1 0
XD =0

XQQZ 01=
0 1 0 1 0 0

0 1 1 0 1 0

QQ 01

X
Z0 1 1 0 1 0

1 0 0 0 0 0

1 0 1 1 1 0

1 1 0 1 0 01 1 0 1 0 0

1 1 1 0 1 1 Q D0

Page 65

Q D1

Binary Decision Diagrams
1. A Binary Decision Diagram (BDD) is a graph

model of the function of a circuitmodel of the function of a circuit.

CBACF += F

A C

B

A

B

0 1

B

C

A

0 1

B B
00

1
B A

C C 1
10

1 Reduced Ordered BDD
10

0

Page 66

0 1

Programs as Functional Models
1. Assembly-Like:

LDA A
3. C-Code is the

direct and fastLDA A
AND B
INV

direct and fast
simulator.

C A+BOR C
STA F

C=A+B;
A=R1*R2;
B= B;2. C-Like:

main(F, A, B, C)

B=~B;

{ int F, A, B, C;
F = ~ (A && B) || C;

}}

Page 67

Functional Modeling at Register Level

1. Basic RTL Constructs
2 Timing Modeling in RTLs2. Timing Modeling in RTLs
3. Internal RTL Models (See Internal

str ct ral model)structural model)

Page 68

Basic RTL Constructs

1. RTL (Register-Transfer Language in Register-Transfer Level)
PC←PC+1; A←A+B+C
PC←PC+1; if C=1 PC←#FA07
R3←A – R4; A←0

2. C or Verilog-like Language:
d l Add (C S A B Ci)module Adder(Co, Sum, A, B, Ci);
Input [15:0] A, B;
Input Ci;Input Ci;
output Co;
output [15:0] Sum; p []
assign {Co, Sum} = A + B + Ci;

endmodule

Page 69

Timing Modeling in RTLs

1. Verilog-like Code:
Sum = #20 A+B;Su # 0 ;
initial

beginbegin
A=1; B=0;
#10 B=1; A=0;#10 B=1; A=0;
#40 B=0;
#10 $stop;#10 $stop;

end

Page 70

Quick Tutorial on Verilog
1. Usual version:

1. VerilogXL/Cadence
2. Verilog/Altera
3. Verilog/Xilinx
4. Verilog/MyCADg y
5. SynaptiCAD Verilogger
6. VeriWell
7. e.t.c.

2 Structural View Gate Level;2. Structural View Gate Level;
3. Behavorial View RTL Level;

S4. Finite State Machine
5. Memory Module

Page 71

y

VLSI TestVLSI TestVLSI TestVLSI Test

Tsung Chu HuangTsung-Chu Huang

Department of Electronic Engineering
National Changhua University of EducationNational Changhua University of Education

Email: tch@cc.ncue.edu.tw

2016/02/22

Page 72

Syllabus & Chapter Precedence
Introduction

Modeling

Logic Simulation Fault Modeling

Fault SimulationFault Simulation

Testing for Single Stuck FaultsTesting for Single Stuck Faults

T t C iD i f T t bilit Test CompressionDesign for Testability

Page 73

Built-In Self-Test

Simulation Process

Stimuli

Simulation
Program

Internal
Model ProgramModel

Results

Page 74

Applications of Logic Simulations

1. Simulation Based Verification (Design
Verification Test): Verification for DesignVerification Test): Verification for Design
Errors

2 Simulation Based Pattern Generation2. Simulation Based Pattern Generation
3. Debugging Software/Microcode
4. IP Modeling

Page 75

Classification of Verification

1. Formal Verification
1. Axioms (Facts, Primitives)
2 Theorems (Rules Structural Relations)2. Theorems (Rules, Structural Relations)
3. Proof (Derivation)

• Informal VerificationInformal Verification
• Simulation-based

Page 76

Problems of Simulation-Based Verification

1. How does one generate the input stimuli
(i.e. design verification test generation)?(i.e. design verification test generation)?

2. How does one know the results are
correct?correct?

3. How good (complete) are applied input
stimuli? (design test evaluation)

Page 77

Types of Simulations

1. Compiler-driven simulator
2 Table-driven simulator2. Table driven simulator
3. Activity-driven simulator

E t D i i l t⊂ Event-Driven simulator

Page 78

Levels of Simulations

1. Register-Level
2 Functional-Level2. Functional Level
3. Gate-Level
4 Mi d L l4. Mixed-Level

1. Time-domain
2. Frequency-domain

5 Transistor-Level5. Transistor-Level

Page 79

Simulated Values

Multiple ValuesMultiple Values
Weak Signals

Boolean
{0 1}

Unknown
Tristate
Floating{0,1}

Unknown
u

Floating
Hi-Z

z

Don’t-care, X is a union of some values, that is different from u.

Page 80

The Unknown Logic Value
u

1 t l f {0 1}1. u represents one value of {0, 1}.

0000

u10AND

u100

u10OR

u01

u10NOT

uu0u

u101

u1uu

1111

2. u vs. X
X10

1
0∅00

uX10∩
∅

∅ ∅1 1

uuu
uXX

1

∅ ∅

0
1
1

1

Page 81

3-Value Logic Simulation
E lExample

1 L f I f ti i 3 V LSi1. Loss of Information in 3-V LSim
0 u
u

u

uX→1
1

u
u

uX→1

2. The fourth value u may solve the2. The fourth value u may solve the
above problem but those with
more two statesmore two states.

3. u may indicate an oscillation or

Page 82

glitch in some simulation systems.

The Hi-Z Logic Value
z

1 It can be looked as {weak 0 weak 1 intermediate value}1. It can be looked as {weak-0, weak-1, intermediate-value}
1

A Z

0

2. 4-V logic (0, 1, Z, X) is used in many HDL, where X is not
don’t_care but unknown.

3. Logic operations except wired-logic are conservatively
derived into an unknown value X.

Page 83

Compiled Simulation
C il b d Si l tCompiler-based Simulator

1. Usually the combinational circuit is
levelized into a direct acyclic graph (DAG)levelized into a direct acyclic graph (DAG)
from inputs.

2 E h t i t d b th i2. Each gate is represented by the generic
primitive of the compiled language, say,
assembly or C.

3. Circuit-timing is difficult to simulate.3. Circuit timing is difficult to simulate.
4. The compiled code (usually called C-code)

is the fast functional simulation approachis the fast functional simulation approach.

Page 84

Compiled Simulation
E lExample

17

0

1

14

12

8
16

15

11

9

10

C il1

2

3

12
13

7

Compiler

5

6

C (G G G GComb(G0, G1, G2, G3,
G17, G11, G13, G10)
{

G14=~G0;
G8 G14&&G6

main()
{

for(Clk=0;
Clk<Stop G8=G14&&G6;

G12=~(G1||G7);
G16=G3||G8;
G16=G8||G12;
G13=~(G12||G2);

Clk<Stop;
Clk++)

{
Input(G0, G1, G2, G3);
Comb(G0 G1 G2 G3 G13=~(G12||G2);

G9=~(G16&&G15);
G11=~(G5||G9)
G17=~(G3||G11);
G10=~G11;

Comb(G0, G1, G2, G3,
D5, D6, D7, Z);

Waveform_a_cycle();
}

}

Page 85

G10 G11;
}

}

Events in HDLs
Si l E tSignal Events

1. Envents are Input and State Changes.1. Envents are Input and State Changes.
2. Primitive events correspondent to some signal Clk

includes its rise (posedge Clk) and fall (negedge Clk).includes its rise (posedge Clk) and fall (negedge Clk).
3. Composite events are the union of more than 2 evnets.
4 The change of Clk is an composite event (Clk)4. The change of Clk is an composite event (Clk).
5. They are propagated using a structural model of a

circuitcircuit.
6. Terminology:

1 Circuit simulated time simulation time circuit1. Circuit simulated time, simulation time, circuit
time.

2 CPU time2. CPU time.
3. Compiling time.

Page 86

Event-Driven Simulation
Ti Wh lTime-Wheel

1. Only simulated times are extracted from real time.1. Only simulated times are extracted from real time.

to t1 t2 t3 t4 t5

Page 87

Event-Driven Simulation
Ti Wh lTime-Wheel

1. The conceptual simulation time is recorded to a1. The conceptual simulation time is recorded to a
dynamic time list.

to t1 t3 t4 t5t2

Page 88

Event-Driven Simulation
Ti Wh lTime-Wheel

1. The simulation time is twisted into a time wheel using a1. The simulation time is twisted into a time wheel using a
ring as a queue to recycle the memory.

2. The simulation time is twisted into a time wheel using a

Page 89

ring as a queue to recycle the memory.

Event-Driven Simulation
Ti Wh lTime-Wheel

1. Since the computation is actually sequential in real1. Since the computation is actually sequential in real
time, the evaluations at the same simulation time
should be ordered to a list.

2. New events are generated by function evaluating and

Page 90

event propagating.

Event-Driven Simulation
M i FlMain Flow

Advance simulation time No more events

Determine current events Done

Update values

Propagate Evnets

Evaluate activated elements

Schedule resulting events

Page 91

Delay Models

1 The basic (functional) delay model is that of a transport1. The basic (functional) delay model is that of a transport
delay, which specifies the interval d (units) separating an
output change from input changes which caused itoutput change from input changes which caused it.

A A#dB F AB #dA
B

F

2. inertial delay: the min. duration to activate delay transport.
3. Spikes (<inertial) will be filtered by the gate.
4. Slightly different btw I/O based inertial delays.
5. Exhaustively, for N-input, M-output functional element, 4MN

delays are considered.
6. 3 values (min, typical, max) are extended in many HDLs.

Page 92

Delay Models in Uniform Transistor Sizing

1 The delay is approximately proportional to its fanout1. The delay is approximately proportional to its fanout,
thus one circuit-dependent delay model derives from
d~RC=IOd□d RC IOd□ .

2. Due to the stack effect, R is proportional to the input
count I in uniform tarsistor sizingcount I in uniform tarsistor sizing.

3. C is proportional to its fanout O.

II

O

Page 93

Hazard Detection

0 1
1. Static

0 1

0 0 0
1 0 1

A
B

F
1 0 1

2. Dynamic: similarly for >3 inputs or with
ffeedback

Basic Detection:Basic Detection:
1. Consider combinational network C and the

changed input I’ btw time t and t+1changed input I btw time t and t+1.
2. Stimulate each feedback wire or changed input

with unknown value u to comparewith unknown value u to compare.

Page 94

Logic Simulation Parallelization
1. When the operation sequence and the bitwise dimension

are independentare independent.
2. Taking advantage of the parallelism of the word size in

the computerthe computer.
3. Usually, a word (32 bits for a 32-bit computer) of gate-

values are propagated and evaluated through the DAG-values are propagated and evaluated through the DAG-
based combinational circuit.

101010100
100000100

Page 95

110001100
100000100

Internal Model of a Gate for Logic Simulation
typedef struct _gate GATE;
struct _gate {

GATE *in1, *in2;
G *GATE *out;
TYPE type;
i t lint value;
};

typedef enum _type TYPE;
enum _type {AND, OR, NAND, NOR, INV};

Page 96

Internal Model of a Gate for Logic Simulation
typedef struct _gate GATE;
struct _gate {

GATE *in[10];
G *GATE *out;
TYPE type;
i t lint value;
};

Page 97

Internal Model of a Gate for Logic Simulation
typedef struct _gate GATE;
struct _gate {

GateList *in;
G *GATE *out;
TYPE type;
i t lint value;
};

typedef struct _gatelistGateList;
struct _gatelist {

GATE *gate;
GateList *next;
}

Page 98

Element Evaluation

1. (Truth) Table Look-up: exponential, only for() y
elements.

2. Dummy Input: for almost uniform input countsy p p
3. Input Scanning: for small input counts

1. Controlling value c: 0 for AND-type gates
1 for OR-type gates

2. Inversion i: 0 for AND, OR
1 f NAND NOR NOT1 for NAND, NOR, NOT

eval(g, c, i) {
u value = false;u_value false;
for every input value v of g

if (v == c) return (c ^ i); else if (v == u)
l tu_value = true;

if u_value return u; else return !c ^ i;
}

Page 99

4. Input Counting: for large input counts

Potential Topic of the Project
Write a logic simulation program to generate the output
vectors after parsing the ISCAS85 benchmark circuitsvectors after parsing the ISCAS85 benchmark circuits
and a list of input vectors.

sim input.txt c17.tdl output.txt

101 00
110
011

10
11

Circuit

Page 100

