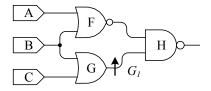
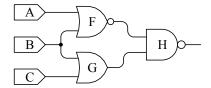
## **Sample and Reviews on Final Examination (Online)**

Fill-in or Paste your Answer, Transfer to PDF and Email to me (tch@cc.ncue.edu.tw) by 11:30

|     | Course: IC Testing Date: 2021/6/7 (Mon.) Time: 09:20~11:00 Place: Online                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reg | g. No. : Student's Name :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| I.  | TRUE OR FALSE (Mark $\bigcirc$ or X, 20%):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (   | <ol> <li>1. The 'slow' in a 'slow-fast-slow' delay test is to make sure correct input and output of initial vector and response respectively.</li> <li>2. 0-1 march test</li></ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | <ul> <li>5. IC test can be fully saved if a fault tolerant mechanism is built in.</li> <li>6. The frequency of an oscillating ring connected by 17 inverters will be reduced when the delay time of all inverters increase.</li> <li>7. A golden test proves that two products under test are good if their outputs are the same with the same input.</li> <li>8. High-acceleration life test (HALT) is applied to screen out the early failure.</li> <li>9. Test compression guarantees that the test set won't be distorted or changed with a fewer size.</li> <li>10. Boundary Scan (IEEE1149.1) can be applied for programming EEPROMs.</li> </ul>                                                                                                                                                                                                                                                                                          |
| II. | MULTIPLE CHOICE (Choose the best one, 20%):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| (   | <ul> <li>1. Which program reads a language and constructs efficient data structures: (A) parser (B) loader (C) interpreter (D) script.</li> <li>2. Backtracking of a recursive subprogram needs to (A) recover global data (B) recover local data (C) backtracing (D) backpropagation.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | <ol> <li>3. Which is a tool for testing? (A) virtuoso (B) design compiler (C) HFS (D) tmax.</li> <li>4. How many bits can be corrected if Hamming distance d=5? (A) 1 (B) 2 (C) 3 (D) 4.</li> <li>5. Except 20 redundant faults, 72 of 80 non-redundant faults can be tested. Test efficiency= (A) 72% (B) 80% (C) 90% (D) 100%.</li> <li>6. Which is mainly responsible for transistor-level simulation? (A) Encounter (B) Debussy (C) HSPICE (D) Virtuoso.</li> <li>7. The most popular design for testability in industry is (A) Scan chains (B) MBIST (C) IDDQ monitor (D) ESD.</li> <li>8. The most popular test for ADC is to test its (A) offset (B) nonlinearity (C) jitter (D) dynamic range.</li> <li>9. TMR corrects the fault by accepting the (A) average (B) minority (C) majority (D) last.</li> <li>10. Which diagram shows the working boundaries of products? (A) I-V (B) Space-Time (C) Shmoo (D) ladder diagram.</li> </ol> |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |


## III. QUESTIONS (120%, at most 60% adopted):


- 1. Design an LFSR in the external type according to the primitive characteristic polynomial,  $p^*(x)$  or  $p(x) = x^4 + x + 1$  (10%).
- 3. Give the English and Chinese terms to explain the three cycles in the bathtub curve (6%). How can we accelerate the first cycle? (4%)

- 2. Encode input message word D[3:0] with three parities P[2:0] to a codeword C[7:1]={D[3:1], P[2], D[0], P[1], P[0]} in Hamming Codes using three RTL codes 'assign P[] = ' in Verilog (10%).
- 4. Three march test algorithms are given as zero-one:  $\[ \] w0 \cap r0 \cap w1 \cap r1 \]$ , read-after-write:  $\[ \] w0r0 \cap w1r1 \]$ , and checkboard:  $\[ \] (\[ \] wt \cap rt)t(\[ \] wt \cap rt) \]$ , where t is a toggling value. Assume the address count is N. Fill in the table for comparison. (10%) (Note: 10 blanks)

| March<br>tests   | Checkboard                                                                | Zero-one | Read-after-<br>write            |
|------------------|---------------------------------------------------------------------------|----------|---------------------------------|
| Algorithm        | $(\widehat{\ }\ wt \widehat{\ }\ rt)t(\widehat{\ }\ wt \widehat{\ }\ rt)$ |          | $ \uparrow w0r0 \uparrow w1r1 $ |
| #Cycles          |                                                                           |          |                                 |
| Stuck-at faults  |                                                                           | V        | V                               |
| Retention faults |                                                                           |          | Х                               |
| Neighbor faults  |                                                                           |          |                                 |

 $B_0,\,B_1,\,C_0,\,C_1,\,F_0,\,F_1,\,G_0,\,G_1,\,H_0,\,H_1\} \ \text{where} \ G_x \ \text{means} \ \text{gate}$ G stuck-at-x fault, (1) justify and propagate to find the test pattern  $T_{G1}$  of  $G_1$ . (2) Then do deductive fault simulation to collect all testable faults of  $T_{G1}$ . (3) Calculate the fault coverage of  $T_{G1}$ ,  $FC(T_{G1}, L_f)$ . (20%)





6. Explain the following terms: (a) Shmoo Plot, (b) MTTF (10%)

- 7. (a) Explain why a simulation in traditional HSPICE is called a fresh simulation? (5%)
  - (b) What's differences between HALT and Burn-in? (5%)

- 8. (a) Some paper claimed that a single sampling for one normal-distributed parameter can get a mean value result with only a  $\pm 0.01$  error. However, most people have known that the deviation is also about 0.01. How is the confidence level of the experiment? (5%)
  - (b) To achieve an error less than  $\sigma/k$  (k is a positive integer) in a zo precision, what is the least sample size? (5%)